缘奇科普-奇怪的知识又增加了

bypass电容 资深硬件工程师也未必知道:0.1uF容量的旁路电容原来是这么来的

原创版权 网络整理作者:佚名 字体大小选择: [ ]

有一定经验的工程师都会发现:旁路电容的容值大多数为0.1uF(100nF),这也是数字电路中最常见的,如下图所示为FPGA芯片的旁路电容:

那这个值是怎么来的呢?这一节我们就来讨论一下这个问题。

前面已经提到过,实际的电容器都有自谐振频率,考虑到这个因素,作为数字电路旁路电容的容量一般不超过 1uF,当然,容量太小也不行,因为储存的电荷无法满足开关切换时瞬间要求的电荷,那旁路电容的容量到底应该至少需要多大呢?我们用最简单的反相器逻辑芯片(74HC04)实例计算一下就知道了。

实际芯片的每个逻辑门基本结构如下图所示(以下均来自Philips 74HC04数据手册)

而每个CMOS反相器的基本结构如下图所示(具体参考文章【逻辑门(1)】):

每个逻辑非门(Gate)由三个反相器串联组成,如下图所示(芯片为什么会这样设计可参考文章“逻辑门”):

上图中,CI表示芯片信号引脚的输入电容(Input capacitance),CL表示输出负载电容(Output Load capacitance)。对于每一级反相器,后一级反相器的输入电容CI即作为前一级开关的输出负载电容,当然,反相器开关本身也会有一定的输出寄生电容,它们也包含在CL内,一个逻辑非门(包含三个反相器)的所有等效负载电容就是内部逻辑阵列开关在切换时需要向电源VDD索取能量的来源(换言之,开关切换时需要对这个等效负载电容进行充放电操作),这个逻辑阵列开关等效电容在数据手册中通常用CPD(power dissipation capacitance per gate)表示,如下图所示 :

注意:在这个数据手册中,CPD是一个逻辑非门(Per Gate)的开关等效电容。

在74HC04芯片中,CPD就相当于是CL1、CL2、CL3的等效电容(不一定是简单的相加),而CL4取决于芯片外接负载,因此,我们也可以将电路等效如下图所示:

有人问:这个公式怎么来的?权威么?我书读得少,不要骗我!数据手册中有呀,如下图所示:

上图中的公式分成了两个部分,但结构是一模一样的,前面一部分与我们给出的公式是相同的,表示芯片内部逻辑阵列开关等效负载电容CPD的功耗,而后一部分与芯片外接负载CL有关(也称之为等效IO开关电容),输出引脚IO连接有多少个负载,就将相应负载电容CL的功耗全部计算起来,如下图所示:

有人问:输入电容CI就不计算进去吗?乖乖,对于芯片输出引脚连接的负载而言,负载的输入电容CI就是引脚的等效负载电容CL呀,输出负载连接(并联)越多,则等效负载电容CL就越大,消耗的功率也就越大,如下图所示:

一般而言,CL(CI)值是总是相对容易找到的,数据手册中通常都会有,因为输出连接什么负载你肯定是知道的,但CPD却不一定在数据手册能查得到,因此,我们在计算芯片的功耗时可能会分为芯片内与芯片外两个部分。

最基础的数据计算方法我们已经知道了,有两种方法可以估算旁路电容的最小容量:

第一种计算方法思路:逻辑阵列开关等效电容(CPD)需要获取足够的电荷能量,那芯片的旁路电容的容量必定不能比芯片总CPD更小,通常旁路电容的容量比芯片总CPD大25~100倍,我们称其为旁路电容倍乘系数(bypass capacitor multiplier,这里取个中间数50),由于74HC04包含六个逻辑非门,从数据手册上也可以查到CPD约为21pF,因此,芯片总CPD应为21pF×6=126pF,再考虑到50倍的旁路电容系数,旁路电容的容量必须要大于126pF×50=6.3nF。

以上计算的是芯片输出未连接负载的情况,假设反相器后面并接了10个逻辑非门(CMOS门电路的扇出系数一般为20~25),则此时等效电路如下图所示:

发表评论 (已有 条评论)

  

评论列表

    快来评论,快来抢沙发吧~